"use strict"; Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" }); const THREE = require("three"); const ConvexGeometry = require("../geometries/ConvexGeometry.cjs"); const _v1 = /* @__PURE__ */ new THREE.Vector3(); const ConvexObjectBreaker = /* @__PURE__ */ (() => { class ConvexObjectBreaker2 { constructor(minSizeForBreak = 1.4, smallDelta = 1e-4) { this.minSizeForBreak = minSizeForBreak; this.smallDelta = smallDelta; this.tempLine1 = new THREE.Line3(); this.tempPlane1 = new THREE.Plane(); this.tempPlane2 = new THREE.Plane(); this.tempPlane_Cut = new THREE.Plane(); this.tempCM1 = new THREE.Vector3(); this.tempCM2 = new THREE.Vector3(); this.tempVector3 = new THREE.Vector3(); this.tempVector3_2 = new THREE.Vector3(); this.tempVector3_3 = new THREE.Vector3(); this.tempVector3_P0 = new THREE.Vector3(); this.tempVector3_P1 = new THREE.Vector3(); this.tempVector3_P2 = new THREE.Vector3(); this.tempVector3_N0 = new THREE.Vector3(); this.tempVector3_N1 = new THREE.Vector3(); this.tempVector3_AB = new THREE.Vector3(); this.tempVector3_CB = new THREE.Vector3(); this.tempResultObjects = { object1: null, object2: null }; this.segments = []; const n = 30 * 30; for (let i = 0; i < n; i++) this.segments[i] = false; } prepareBreakableObject(object, mass, velocity, angularVelocity, breakable) { const userData = object.userData; userData.mass = mass; userData.velocity = velocity.clone(); userData.angularVelocity = angularVelocity.clone(); userData.breakable = breakable; } /* * @param {int} maxRadialIterations Iterations for radial cuts. * @param {int} maxRandomIterations Max random iterations for not-radial cuts * * Returns the array of pieces */ subdivideByImpact(object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations) { const debris = []; const tempPlane1 = this.tempPlane1; const tempPlane2 = this.tempPlane2; this.tempVector3.addVectors(pointOfImpact, normal); tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3); const maxTotalIterations = maxRandomIterations + maxRadialIterations; const scope = this; function subdivideRadial(subObject, startAngle, endAngle, numIterations) { if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) { debris.push(subObject); return; } let angle = Math.PI; if (numIterations === 0) { tempPlane2.normal.copy(tempPlane1.normal); tempPlane2.constant = tempPlane1.constant; } else { if (numIterations <= maxRadialIterations) { angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle; scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact); tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2); } else { angle = (0.5 * (numIterations & 1) + 0.2 * (2 - Math.random())) * Math.PI; scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position); scope.tempVector3_3.copy(normal).add(subObject.position); tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2); } } scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects); const obj1 = scope.tempResultObjects.object1; const obj2 = scope.tempResultObjects.object2; if (obj1) { subdivideRadial(obj1, startAngle, angle, numIterations + 1); } if (obj2) { subdivideRadial(obj2, angle, endAngle, numIterations + 1); } } subdivideRadial(object, 0, 2 * Math.PI, 0); return debris; } cutByPlane(object, plane, output) { const geometry = object.geometry; const coords = geometry.attributes.position.array; const normals = geometry.attributes.normal.array; const numPoints = coords.length / 3; let numFaces = numPoints / 3; let indices = geometry.getIndex(); if (indices) { indices = indices.array; numFaces = indices.length / 3; } function getVertexIndex(faceIdx, vert) { const idx = faceIdx * 3 + vert; return indices ? indices[idx] : idx; } const points1 = []; const points2 = []; const delta = this.smallDelta; const numPointPairs = numPoints * numPoints; for (let i = 0; i < numPointPairs; i++) this.segments[i] = false; const p0 = this.tempVector3_P0; const p1 = this.tempVector3_P1; const n0 = this.tempVector3_N0; const n1 = this.tempVector3_N1; for (let i = 0; i < numFaces - 1; i++) { const a1 = getVertexIndex(i, 0); const b1 = getVertexIndex(i, 1); const c1 = getVertexIndex(i, 2); n0.set(normals[a1], normals[a1] + 1, normals[a1] + 2); for (let j = i + 1; j < numFaces; j++) { const a2 = getVertexIndex(j, 0); const b2 = getVertexIndex(j, 1); const c2 = getVertexIndex(j, 2); n1.set(normals[a2], normals[a2] + 1, normals[a2] + 2); const coplanar = 1 - n0.dot(n1) < delta; if (coplanar) { if (a1 === a2 || a1 === b2 || a1 === c2) { if (b1 === a2 || b1 === b2 || b1 === c2) { this.segments[a1 * numPoints + b1] = true; this.segments[b1 * numPoints + a1] = true; } else { this.segments[c1 * numPoints + a1] = true; this.segments[a1 * numPoints + c1] = true; } } else if (b1 === a2 || b1 === b2 || b1 === c2) { this.segments[c1 * numPoints + b1] = true; this.segments[b1 * numPoints + c1] = true; } } } } const localPlane = this.tempPlane_Cut; object.updateMatrix(); ConvexObjectBreaker2.transformPlaneToLocalSpace(plane, object.matrix, localPlane); for (let i = 0; i < numFaces; i++) { const va = getVertexIndex(i, 0); const vb = getVertexIndex(i, 1); const vc = getVertexIndex(i, 2); for (let segment = 0; segment < 3; segment++) { const i0 = segment === 0 ? va : segment === 1 ? vb : vc; const i1 = segment === 0 ? vb : segment === 1 ? vc : va; const segmentState = this.segments[i0 * numPoints + i1]; if (segmentState) continue; this.segments[i0 * numPoints + i1] = true; this.segments[i1 * numPoints + i0] = true; p0.set(coords[3 * i0], coords[3 * i0 + 1], coords[3 * i0 + 2]); p1.set(coords[3 * i1], coords[3 * i1 + 1], coords[3 * i1 + 2]); let mark0 = 0; let d = localPlane.distanceToPoint(p0); if (d > delta) { mark0 = 2; points2.push(p0.clone()); } else if (d < -delta) { mark0 = 1; points1.push(p0.clone()); } else { mark0 = 3; points1.push(p0.clone()); points2.push(p0.clone()); } let mark1 = 0; d = localPlane.distanceToPoint(p1); if (d > delta) { mark1 = 2; points2.push(p1.clone()); } else if (d < -delta) { mark1 = 1; points1.push(p1.clone()); } else { mark1 = 3; points1.push(p1.clone()); points2.push(p1.clone()); } if (mark0 === 1 && mark1 === 2 || mark0 === 2 && mark1 === 1) { this.tempLine1.start.copy(p0); this.tempLine1.end.copy(p1); let intersection = new THREE.Vector3(); intersection = localPlane.intersectLine(this.tempLine1, intersection); if (intersection === null) { console.error("Internal error: segment does not intersect plane."); output.segmentedObject1 = null; output.segmentedObject2 = null; return 0; } points1.push(intersection); points2.push(intersection.clone()); } } } const newMass = object.userData.mass * 0.5; this.tempCM1.set(0, 0, 0); let radius1 = 0; const numPoints1 = points1.length; if (numPoints1 > 0) { for (let i = 0; i < numPoints1; i++) this.tempCM1.add(points1[i]); this.tempCM1.divideScalar(numPoints1); for (let i = 0; i < numPoints1; i++) { const p = points1[i]; p.sub(this.tempCM1); radius1 = Math.max(radius1, p.x, p.y, p.z); } this.tempCM1.add(object.position); } this.tempCM2.set(0, 0, 0); let radius2 = 0; const numPoints2 = points2.length; if (numPoints2 > 0) { for (let i = 0; i < numPoints2; i++) this.tempCM2.add(points2[i]); this.tempCM2.divideScalar(numPoints2); for (let i = 0; i < numPoints2; i++) { const p = points2[i]; p.sub(this.tempCM2); radius2 = Math.max(radius2, p.x, p.y, p.z); } this.tempCM2.add(object.position); } let object1 = null; let object2 = null; let numObjects = 0; if (numPoints1 > 4) { object1 = new THREE.Mesh(new ConvexGeometry.ConvexGeometry(points1), object.material); object1.position.copy(this.tempCM1); object1.quaternion.copy(object.quaternion); this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak ); numObjects++; } if (numPoints2 > 4) { object2 = new THREE.Mesh(new ConvexGeometry.ConvexGeometry(points2), object.material); object2.position.copy(this.tempCM2); object2.quaternion.copy(object.quaternion); this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak ); numObjects++; } output.object1 = object1; output.object2 = object2; return numObjects; } static transformFreeVector(v, m) { const x = v.x, y = v.y, z = v.z; const e = m.elements; v.x = e[0] * x + e[4] * y + e[8] * z; v.y = e[1] * x + e[5] * y + e[9] * z; v.z = e[2] * x + e[6] * y + e[10] * z; return v; } static transformFreeVectorInverse(v, m) { const x = v.x, y = v.y, z = v.z; const e = m.elements; v.x = e[0] * x + e[1] * y + e[2] * z; v.y = e[4] * x + e[5] * y + e[6] * z; v.z = e[8] * x + e[9] * y + e[10] * z; return v; } static transformTiedVectorInverse(v, m) { const x = v.x, y = v.y, z = v.z; const e = m.elements; v.x = e[0] * x + e[1] * y + e[2] * z - e[12]; v.y = e[4] * x + e[5] * y + e[6] * z - e[13]; v.z = e[8] * x + e[9] * y + e[10] * z - e[14]; return v; } static transformPlaneToLocalSpace(plane, m, resultPlane) { resultPlane.normal.copy(plane.normal); resultPlane.constant = plane.constant; const referencePoint = ConvexObjectBreaker2.transformTiedVectorInverse(plane.coplanarPoint(_v1), m); ConvexObjectBreaker2.transformFreeVectorInverse(resultPlane.normal, m); resultPlane.constant = -referencePoint.dot(resultPlane.normal); } } return ConvexObjectBreaker2; })(); exports.ConvexObjectBreaker = ConvexObjectBreaker; //# sourceMappingURL=ConvexObjectBreaker.cjs.map